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Synopsis 

Observation of many tangles supports a loop mechanism of entanglement in macroscopic systems. 
The untangling of an unknotted tangled cord gives curves resembling the behavior under constant 
stress of an uncrosslinked elastomer. Reinforcement as a function of filler loading has been calculated 
for a model system consisting of uniform spherical particles in an unknotted tangled matrix. These 
calculated curves show the maxima found in real systems. Reinforcement also increases with de- 
creasing particle size. The effect on the entanglement of porous particles and particles forming 
surface attachments with the polymer have been considered. The maximum in the calculated re- 
inforcement curve shifts toward higher filler loading with increasing surface activity. This shift 
is independent of particle size and suggests a method for assessing the relative effectiveness of dif- 
ferent coupling agents. 

INTRODUCTION 

Polymer chains have properties of flexibility and continuity similar to many 
frequently tangled objects. Because entanglement is basic to polymer properties, 
an understanding of the process of entanglement and the nature of the tangled 
network in macroscopic systems may lead to useful insights into polymer be- 
havior. This article presents a new model of entanglement based on observations 
of macroscopic tangles and their untangling and discusses the effect of inelastic 
spherical particles on this model. 

Observation of many tangles, both intentional and inadvertent, suggests that 
systems of flexible strands that tangle by random processes not acting specifically 
on the ends are largely unknotted and that the entire length of the strand par- 
ticipates actively in the entanglement. In most of the previous work on polymer 
entanglement, the entanglements are explicitly1,2 or i m p l i ~ i t l y ~ - ~  assumed to 
be knotted, with the ends being the active part. 

ENTANGLEMENT I N  MACROSCOPIC SYSTEMS 

Many tangles containing up to 260 crossings were studied. Accidental tangles 
were also observed as the opportunity arose. Entanglement was observed in all 
of these to occur by means of loops. 

An investigation into the untangling of one system showed behavior similar 
to  the creep behavior of an uncrosslinked elastomer. Both ends of a length of 
cord were fastened to prevent knotting, and the loop was tangled to the desired 
degree. The tangle was suspended and measured. Using the weight of the cord 
as the extensive force, the tangle was kept in random motion manually for a pe- 
riod of time, after which the length to the lowest point was measured. This was 
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repeated until the snarl was completely untangled. The plots of length vs. time, 
shown in Figure 1, show a surprising resemblance to the creep curves charac- 
teristic of uncrosslinked elastomers. 

LOOP MODEL OF ENTANGLEMENT 

Knotted and Unknotted Tangles 

Since the concept of an unknotted tangle is central to this model of entan- 
glement, short definitions of knotted and unknotted tangles are given here. 
Extend the ends of the cord to infinity or join them outside the tangle. The 
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Fig. 1. Untangling of a randomly tangled unknotted cord. 

tangle is unknotted if it can be untangled without cutting the cord. A knotted 
tangle can not be untangled without cutting the cord or involving an end. The 
tangle shown in Figure 2(a) is unknotted, and that in Figure 2(b) is an overhand 
knot. 

Loop Interactions 

The interaction of separate loops will be considered first. For simplicity in 
these diagrams, the loops are short, regularly shaped, and rather narrow. The 
ends are assumed to be fixed in the matrix and to be unavailable. Although these 
conditions will not necessarily be found in a real tangle, the interaction between 
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(b) 
Fig. 2. Unknotted (a) and knotted (b) tangles. 

loops remains unchanged. The following convention will be used to describe 
the interactions of the loops. Each loop is represented by a letter; when one loop 
passes through another loop, an arrow is drawn from the first letter to the second. 
Define the order of a loop to be the number of loops which must be successively 
withdrawn before the loop is free. The order of the tangle is that of the highest 
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order loop in the tangle. Figure 3(a) shows the simplest case of entanglement 
in an unknotted system and illustrates the process by which such systems tangle. 
Loop B cannot be withdrawn in the direction of the arrow until loop A is removed. 
Loop A is free. Figure 3(a) is a first-order tangle. Loop A is zero-order and loop 
B is first-order. If another loop, C, is inserted through loop A, as shown in Figure 
3(b), the tangle becomes second-order and the order of each of the loops A and 
B increases by one. Loop C is zero-order. 

The order is independent of the number of separate strands involved. The 
loops participating in a given tangle may belong to the same strand or to different 
strands, and twisting of the loops does not affect the entanglement. The strands 
continue on to another loop of the same tangle, another tangle, or other random 
behavior. Note that in any of these tangles, untangling must begin with a 
zero-order loop and proceed in the direction of the arrows. No loop can be 
withdrawn until it has become zero-order by the removal of all loops passing 
through it. The addition of another zero-order loop increases the order of the 
tangle only if it locks a zero-order loop that determines the order of the tangle. 
The ends may be thought of as loops that are permanently zero-order. They 
may lock other loops but may not themselves be locked or extended. A small 
degree of knotting is introduced in this manner, but it is of low order and tran- 
sient. 

Stress can be transmitted to a loop only along the cord. When the stress is 
resolved into components acting parallel and perpendicular to the cord, only the 
cases shown in Figure 4 are effective in untangling. If the loop is zero-order, it 

t t 

Fig. 4. Effect of stress on chain loops. Stress may be applied perpendicular (a) or parallel (b) 
to the axis of the loop. 

responds to stress (a) by straightening out and is not available for further 
tangling. Its order is defined as O*. When a zero-order loop responds to stress 
(b), it lowers the order of any tangle it is removed from; but, unless a stress of 
type (a) is also imposed, it is available for further tangling at its new location. 
Its order is unchanged. If either stress is applied to a loop that is not zero-order, 
the stress is transmitted to the loops trapped inside; but the order of the tangle 
is not changed by the motion of the first loop. 
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Entanglement in Polymers 

In an elastomer above its glass transition, the chains are in constant random 
motion. Loops are constantly being thrust out and withdrawn. The order of 
a given loop will change on a time scale that depends on the segmental jump 
frequency. If the system is unstressed, the tangle reaches an equilibrium state 
where the tangling and untangling of the loops are balanced. When the system 
is extended along one axis some of the zero-order loops are straightened. These 
loops are effectively removed from the system, disturbing the equilibrium which 
then shifts in the direction of untangling. 

Action of Crosslinks in This Model 

Filled elastomers are usually also crosslinked. The role of crosslinking in this 
model will be discussed briefly here since it differs from that usually assumed. 
In this model, the effect of crosslinks is to alter the probability of tangling and 
untangling so that the tangled network persists. Any section of the tangle de- 
pendent on a crosslinked loop cannot go below the order determined by that loop. 
The extension is controlled, not by the crosslinks, but by the tangle as hindered 
by the crosslinks. The creep behavior of crosslinked and uncrosslinked elasto- 
mers is similar through the plateau zone until the point where the uncrosslinked 
system begins to flow. The crosslinked system shows no sharp change in be- 
havior but responds to an additional stress according to the superposition 
principle. This suggests strongly that the extension is controlled in the same 
manner in both crosslinked and uncrosslinked systems. 

REINFORCEMENT AS HINDERED DISENTANGLEMENT 

Model 

Reinforcement in this model arises from the interaction between inelastic filler 
particles and the tangled matrix. Since this interaction is affected by the filler 
surface, three different types of filler surface will be considered. The first type 
of particles are smooth spherical particles having no interaction with the polymer, 
as shown in Figure 5(a). The particles shown in Figure 5(b) are basically 
spherical but contain cavities or crevices into which sections of the polymer chain 
can enter. The particles shown in Figure 5(c) can form attachments with the 
neighboring polymer chains. These two surface modifications can occur sepa- 
rately or together. If both are present, their effect is additive. 

In an unfilled elastomer under tension, the forces are extensive in the direction 
of the stress and compressive perpendicular to the stress. The forces are uniform 
throughout the sample except at the surface. When inelastic filler particles are 
present, the distribution of forces is much more complex. When the sample is 
extended, the tangle between adjacent filler particles in the plane perpendicular 
to the extension is compressed. The untangling in this region is repressed and 
further hinders the untangling in neighboring regions because some loops are 
“locked in” by the loops of the compressed regions. This mechanism does not 
depend on any surface interaction between polymer and filler and may explain 
the reinforcing effect of filler particles of the type shown in Figure 5(a). 
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(C) 

Fig. 5. Types of filler particles considered. The surface of a filler particle may be smooth and 
inert (a), pitted (b), or able to form attachments to the polymer chains (c). 

If the filler particles contain crevices, such as those shown in Figure 5(b), 
sections of the tangle may enter. The sections of the tangle inside the filler 
particle are not only unstressed, except at the mouth of the crevice, but are also 
constrained by the walls of the cavity. They will tend to remain there and will 
lock any loops that they are entangled with, thus increasing the reinforcing effect 
of the filler. In Figure 6,  loops A, B, and C are inside a cavity in the filler particle. 
Loops D and E cannot be freed until the entire section inside the cavity is re- 
moved. 

Attractive forces between the surface of the filler and the polymer reduce the 
mobility of the loops adjacent to the filler suface and hinder untangling. Even 
weak attachments between polymer and filler inhibit the motion of the loops 
involved, thus preventing or greatly slowing their untangling. It is apparent with 
this model that the increase in strength in such a system is not directly dependent 
on the strength of these attachments in relation to the stress. To be effective, 
the attachments need only overcome the random motion of the polymer chain. 
The attachments will be effective to the extent that they inhibit the motion of 
the adsorbed loops. The response is controlled by the entanglement, not by the 
polymer-filler attachments. This effect increases with the number of attach- 
ments up to the limit at which all loops in contact with the filler surface are 
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Fig. 6. Entanglements trapped in a surface cavity. Loops A, B, and C are inside a crevice in the 
surface of the filler particle. Loops D and E are hindered by the section of tangle inside the 
crevice. 

Fig. 7. Entanglement with some loops adsorbed on the filler surface. Loops A and B are adsorbed 
on the filler surface. Loops C and D hindered by loop A, loop E is hindered by loop B, and loop F 
is free. 

hindered. In the case shown in Figure 7, loops A and B are adsorbed on the filler 
particles. Loops C, D, and E are “locked in.” Loop F is free to respond to 
stress. 
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Fig. 8. Hexagonal packing model used in calculations 

Calculations 

Consider a thin layer of polymer, perpendicular to the extensive force, con- 
taining uniform spherical filler particles in the packing shown in Figure 8. As- 
sume that the untangling is hindered in a cylinder with its axis along the line 
joining the centers of the particles and a radius equal to one-half the radius of 
the particles. If d is the distance between the centers of the particles, the volume 
and surface area of each cylinder are given by 

Vcyl = a(r - 2)2(d - 2r )  

Scyl = xr(d - 2r) 

The area of the surface of the sphere adjacent to each end of the hindered region 
is r2(2 - &)a. The volume of unhindered tangle is equal to the total volume 
minus the volume of filler and hindered tangle. Reinforcement should be pro- 
portional to the ratio of the total hindered surface to the volume of unhindered 
tangle. If polymer-filler surface interactions of any type are present, part of 
the filler surface must be included in the total hindered surface. Let f be the 
ratio of the reinforcement due to the filler surface to that due to the hindered 
tangle per unit area. Then that fraction f of the filler surface adjacent to the 
unhindered regions must be added to the lateral surface of the hindered regions 
to determine the total hindered surface area. 

For the hexagonal packing shown in Figure 8, the unit of volume is a hexagonal 
prism. The in-radius of the prism circumscribed about a sphere of radius r is 
r .  The height is 2r, and the edge of the hexagonal face is (2 f i13 ) r .  The volume 
of the prism is 4 a r 3 ,  and the maximum loading for a unit volume is l14&r3. 
The number of particles, n, present is given by n = u 1 4 a r - 3 ,  where u is the 
fraction of the maximum loading. The volume per particle at a loading u is 
4&r3/u. If the height of the prism and the distance between the centers of 
adjacent spheres is d then the volume is (&2)d3, and 

Each particle has six neighbors in the plane giving an average of three compressed 
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regions per sphere. The volume compressed per sphere is 3 ~ ( r / 2 ) ~ ( 2 r u - ~ / ~  - 
2r) .  The total volume compressed for n spheres, v h ,  is given by 

The total lateral surface area of the compressed regions, s h ,  is 

The total surface of the spheres not adjacent to the hindered regions, S f ,  is 
v ( 9  - 4 a  Sf  = 

6r 
For a filler surface efficiency f ,  the total hindered surface St is 

s, = s h  + srf 

st = 1 ( 3 & 2 / 3  + [(9 - 4 4 9 f  - 3&]u) 
6r 

Let p = (9 - 4 a ) f  - 3 f i ,  then 

lr st = - (3&u2/3 + p u )  
6r 

The unhindered volume is 

The ratio of total hindered surface to unhindered volume is 
3&2/3 + pu 

12 
where p = (9 - 4 a ) f  - 3d3 .  

Figure 9 shows the curves obtained by plotting reinforcement as a function 
of the fraction of the maximum loading for several values of the radius when the 
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Fig. 9. Reinforcement as function of filler loading. Effect of particle size for a surface efficiency 
ratio of 0. 
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surface efficiency ratio of the particles is 0.0. Figure 10 shows the curves obtained 
for values of the surface efficiency ratio ranging from 0 to 1 for a radius of 
0.01. 
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Fig. 10. Reinforcement as function of filler loading. Effect of surface efficiency ratio. 

Agreement with Observed Properties 

Decreasing particle size increases the reinforcement in this model. The curves 
obtained by plotting reinforcement as a function of filler loading show the 
maxima characteristically obtained in real systems. Increasing the surface ac- 
tivity ratio increases the reinforcement and also shifts the maximum reinforce- 
ment toward higher filler loadings. Beyond a critical value of the surface activity 
ratio, the curves showed no maximum as shown in Figure 10. The surface ac- 
tivity ratios actually attained in real systems are probably well below this critical 
level. The shift in the maximum is independent of particle size, at least for 
uniform spherical particles. For hexagonal packing, the plots of reinforcement 
as a function of loading show a maximum up to a surface efficiency ratio of 0.43. 
Figure 11 shows the filler loading at  maximum reinforcement as a function of 
the surface efficiency ratio. 

Since the filler surface efficiency ratio f is the ratio of the effectiveness of the 
filler surface to that of the surface of the hindered cylinder, it can be changed 
either by altering the filler surface or, if the filler surface is not inert, by changing 
the molecular weight of the polymer and thus altering the extent of entanglement 
and the effectiveness of the hindered cylinder. 
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Fig. 11. Filler loading at  maximum reinforcement as function of the surface ratio. 

Brabender plasticity as a function of filler loading for poly(dimethylsi1oxanes) 
of varying molecular weights and degrees of branching was measured by Schatz 
and Svehla.6 The filler used was Aerosil 200. Viscosity of polymer melts of 
sufficiently high molecular weight varies as molecular weight to the 3.4 power. 
This strong dependence of viscosity on molecular weight is thought to be a direct 
manifestation of chain entanglements. If the branched polymers are assumed 
to be divided into segments of equal length by the branching points, a quantity 
E proportional to the entanglement can be calculated. E is taken to be the sum 
of the 3.4 powers of all continuous paths, adjusted so that each section is counted 
only once. 

Table I gives the assumed configuration and the formula by which E was cal- 
culated for chains having 0, l, and 2 branching points. Table I1 lists the filler 

TABLE I 
Degree of Branching and Calculated Entanglement 

Degree of Configuration 
branch i n P assumed E 

0 

1 

2 

Y 
X 

M3.4 

TABLE I1 
Calculated Entanglement and Location of Maximum 

Polymer at  max. M x 10-4 B E 
Loading 

A 4 61 0 110 
B 8 45 0 42 
E 8 61 1 44 
C 11 39 0 26 
F 11 61 2 26 
D 14 21 0 3.1 
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loading at  the maximum, the molecular weight, and the degree of branching as 
reported by Schatz and Svehla and the calculated value of E .  As the entangle- 
ment decreases and f increases, the maximum occurs at higher loading. 
Branched and linear polymers having similar entanglement have similar loading 
at  the maximum. 

DISCUSSION 

This model uses a fundamentally different mechanism of entanglement that 
requires reexamination of many of the commonly held concepts of polymer 
science. The entanglements in this model are unknotted, and entanglement 
is a result not of single crossings but of a number of crossings working jointly. 
Polymer entanglement by this model is a dynamic equilibrium process actively 
involving the entire strand. There are no “points of entanglement,” and the term 
“distance between entanglements” is meaningless because the entire chain is 
involved in the entanglement process. The quantity determining the properties 
of a system is not the number of entanglements per unit volume but the degree 
of entanglement. Slow relaxations are the result of a number of loop relocations 
that must occur in sequence, and no point on the chain moves through a large 
distance during tangling or untangling. The effect of inelastic spherical particles 
on an entanglement of this type agrees qualitatively with the observed behavior 
of elastomer-filler systems. 

Reinforcement was calculated for a very simple model system. As the filler 
loading is increased, the reinforcement first increases, then goes though a max- 
imum, and decreases. The effect of the activity (of unspecified type) of the filler 
surface was also calculated. The loading a t  the maximum in these curves seems 
to reflect the relative effectiveness of the entanglement and the filler surface. 
It does not depend on particle size and will probably be less sensitive to changes 
in other variables than the value of a physical property at the maximum. Thus, 
the filler loading at the maximum should be a useful measure for assessing filler 
surface activity and comparing the relative effectiveness of different coupling 
agents since it depends only on the filler surface activity ratio. Its use for this 
purpose should be investigated further. 
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